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Parallel dynamic for an extremely diluted neural network 
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USSR 

Received 16 October 1990 

Abstract. We consider a symmetric version of the Derrida-Gardner-Zippelius ( DGZ) 
model. it is shown that in the limit of extreme dilution this modification of the DGZ model 
can be solved exactly. This means that for the evolution of the main overlap we obtain 
analytic expressions which (in contrast to the DGZ model) constitute a chain of coupled 
equations. 

The symmetric synaptic connections and full connectivity are known as the basic 
features which allow one to apply the methods of equilibrium statistical mechanics to 
develop a theory of neural network models for associative memory [l] .  On the other 
hand, both of these constraints are unrealistic from the biologist’s point of view. For 
getting closer to biology several modifications of the Little-Hopfield model have been 
proposed, including sparsely connected networks with asymmetric connections, see 
e.g. [2-51. 

An important recent achievement in this direction has been the exact analytic 
solution of the dynamics of a randomly diluted, asymmetric version of the Little- 
Hopfield model introduced and studied by Derrida, Gardner and Zippelius ( DGZ) 

model [ 6 ] .  The model consists of a system of N Ising spins {sJ = f l}:, (binary neurons) 
living in vertices of the network N N  = {1,2,. . . , N }  being connected by the bonds 

M 

p= 1 
JIJ = C, 1 t l”)t~p)’. 

Here 

{C!JE{o, l})R=l ( i  + j )  

are independent identically distributed random variables ( I I D R V )  which represent the 
dilution and the asymmetry. Realizations 

of the I I D R V  

with Pr{t;.”)= * l}=i ,  correspond to M stored patterns If P>N’= Pr{C,, = 1, 
i # j }  = C /  N, then in the limit N +  00 one gets extremely diluted asymmetric network 
whose parallel (and random sequential) dynamics can be described exactly. As dis- 
covered in [ 6 ]  two conditions are essential for the exact solution. 
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The first is high asymmetry of synaptic connections: Pr{C, = C,, = l} = C2/ N 2 ,  but 
Pr{ C,] = 1 n C,, = 0) = (C/ N ) (  1 - C/ N )  due to independence of dilution variables for 
different pairs, e.g., for ( i , j )  and ( j ,  i). This means that (for N + CO) the number k of 
symmetric connections (i.e. number of pairs ( i , j ) ,  i < j ,  such that C,, = C,, = 1 )  has a 
Poisson distribution: PSymm(k) = (Ak/k!)e-A with parameter A = C2/2 .  So, the number 
of symmetric connections in the infinite configurations C = { C,,}T,=l is finite with Pr = 1.  
The second is a local tree structure [ 1,7] of the graph G,[ C ]  with vertices Nr and 
the set of edges { ( i ,  j ) :  C, = 1; i, j~ ."} in the limit of extreme dilution. This, in 
particular, means that in the limit N + CO: 

( i)  almost all feedback loops are eliminated; 
(i i)  with Pr= 1 any two neurons have different clusters of ancestors, i.e. they will 

remain independent because they receive inputs from two trees which have no neurons 
in common. 

The aim of the present paper is to show that parallel dynamics of extremely diluted 
networks can be treated explicitly even if asymmetry constraints are relaxed (see remark 
at the end of [6]). We demonstrate how a probabilistic approach to the description of 
the parallel dynamics (see [8,9]) can be applied in this case. 

We consider a symmetric diluted network with interactions 

Cyw ( P )  ( P I  
J l /  =- c 51 6, 2c p = 1  

where Cyw = max( C, ; C,,) in the limit of extreme dilution. We are interested in the 
description of evolution of the main overlap 

generated by parallel dynamics (for temperature 0) :  

D j s ) : s i ( r ) + s i ( t + l )  

with 

2 N  

0 , = I  
Pr{ s , ( t+I )=* l }=  - s , ( t+I ) -  1 Jus, 

in the thermodynamic limit N + CO, when 

lim m g ' (  t = 0) = ~ , , , m ' ~ ' (  t = 0) p = 1 ,  2, . 
N -r 

and getting to the limit M + CO, M / 2 C  + a (after N + CO), cf the recent paper [ 101. 
Note, that restoration of symmetry does not change the local tree structure of the 

new graph G,[C"'"]. The only difference is that now Pr{CyW= 1 ,  i#j}= 
2 ( C / N )  - ( C / N ) 2 ,  i.e. for N + C O  the probability distribution of the number of sym- 
metric connections for each neuron is Poisson with parameter A = 2C. Now the limit 
C + CO ( M / 2 C  + a) corresponds to the infinite average connectivity of a such prepared 
sparse network. 

To satisfy initial conditions (2) we suppose that configuration { s i ( 0 ) } x I  is random. 
It is independent of { ~ ' P 1 } p h ; t q ) = l  but is correlated with 5'": 

P ~ { S ~ ( O ) ( : ~ ~ =  *1}=t[l  * n ~ ' ~ ' ( t  =o)]. 
For simplicity we start with the parallel dynamics (1) for zero temperature 0 = 0. Then 
dynamics ( 1 )  gets the form Die='): si( t )  + s i (  t +  1) = sign[Zc, Jusj( r ) ] .  
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It is clear that for the first step of dynamics (Dit\") the symmetry of the random 
field C"'" is irrelevant. Hence, for this step one gets the result known for the asymmetric 
case [6]: 

where erf( z )  = j: dx exp{ -x2/2}. Equation (3) coincides with the well known 
Kinzel formula [11] which is a consequence of general arguments [ 9 ] .  We have to 
explain them in order to pass to the next step t = 2 and then to general formulae. 

Let Z i ( C " ' " ) = { j ~ N m :  Cyw= 1) be the set of neurons connected with a fixed 
neuron i for a configuration C"'" and \Ii( C"'")I be the number of these neurons. Then, 
using ~l"=;@", one gets 

where 

As it is mentioned above, Pr{lZil = k }  = (Ak/k!)e-* with A = 2C. Therefore, in the limit 
C +CO by the large deviations arguments [ 121 we get 

for any E > O  and some y>O. By the initial conditions {411;9(r = O ) } p ( f q ) , l E I ,  is a 
realization of the sequence of I I D R V  with E (  4::( r = 0)) = 0 and Var( +::( t = 0)) = 1. 
Hence, in the 'a'-lim: M + 00, M / 2 C  + CY, taking into account (6) and the central limit 
theorem (CLT), one gets 

d 
'a'-lim u$,)( r = 0) = J;;N(o, 1) (7)  

where d means convergence in distribution and N (  a, b )  is a Gaussian random variable 
with expectation a and with variance b. The initial conditions and the strong law of 
large numbers ( SLLN) together with (6) yield 

Therefore, combining (4), (7) and (8) one gets that 

which, gives (3) for 'a ' - l im(l /N) 2,"=, 5:q1s,(t = 1) by the SLLN.  Similarly, to derive 
formulae for m'q)( t = 2)  we have to calculate distribution of t iq ' s , (  r = 2) or of ol,:,'( r = l ) ,  
see (4) and (5). 

In contrast to the case of directional bonds, for symmetric connections a feedback 
is essential for r s 2 .  At time t = 2  the neuron i receives from the environment Z,, the 
input which is correlated by the state of the same neuron at r = 0 (echo). Calculations 
of these correlations for a fully connected network is a complicated problem [9]. For 
extremely diluted cases it is easier because of a simple (local tree) structure of the 
graph G,[ C"'"]. 
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By the local-tree structure of the graph G,[ CneW] variables { s j (  t = l)}jcI, are corre- 
lated due to only one common ancestor s i ( t  = O ) .  Hence, to calculate a limiting 
distribution for v).:,’(t = 1) we have to take into account that {4:7(t = l)}j,I, are 
correlated: 

The first term in the argument of sign appears due to the above common ancestor i E Z, 
and it is independent of j E Z,. Here 

1 1 
w , ~ . q ( t ) = - - - t j ~ )  1 t P ) s k ( r ) + -  e j f ) . $ ) s , ( r )+Es , ( t )  t:f)tlf). 

2 c  kaI , \ { r )  2 c k E I,\( I) f c  f q /(#PI 

The second and the last terms in ( 1  1 )  are independent random variables. Distribution 
of the last term is independent of the realizations of the variables {t!’)}j?, and s,( t = 0) 
which are the only possible source of the dependence of variables wjPsq)(  t = 0) for 
different j .  Consequently { w : ~ * ~ ) (  t = O ) } , E I ,  are independent for different j .  

By the initial conditions the first term in ( 1 1 )  converges in the ‘a’-lim for t = O  to 
t :q )mlq ) (  t = 0). The sum of the second and the third term, by (5) and (6), (7), converges 
to the random variables & N O ,  1 )  which are, by the above arguments, independent 
for different j .  Thus 

1 M 

( 1 1 )  

‘a’-lim wFq(t = 0) f tjq)m(q)(t = 0) +&N(o, 1 ) .  (12) 
This means that the density of the probability distribution for (12) has the form 

Independence of &q),$p)tjp) and wF4( t = 0) and the symmetry of (13 )  provide the same 
probability density for variable t i q ) t ~ p ) t j p ) w 7 q (  t = 0). Then one gets for variable (10) 
in the ‘a’-lim the following conditional expectation: 

and variance: 

Using (14) one obtains: 

‘a’-lim E (  &,(t  = 1)1t1”sl(o)) = 2af~ ,c0 , (0)~ lq) ’s i (~) .  

According to (10) and (12), for any fixed realization tisi( t = 0) the sequence 

is IIDRV.  Hence, we can apply to this sequence (for a fixed &,si( t = 0)) the CLT. Then, 
using (14)-(16) and ( 5 ) ,  we get 

d 
‘a’-lim u $ , ( t  = 1 )  = 2 ~ f ~ , , , ( 0 ) ~ ~ 4 ” s , ( 0 ) + ~ x ( 0 ,  1 )  (17)  
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where ,${q’si(0) and N ( 0 ,  1 )  are independent. Hence (cf (4)) 

‘a’-Iim tiq)si(t = 2 )  =sign[m‘q’(t = 1 ) + 2 0 1 f , , 0 , ( ~ ) ~ ~ q ) s i ( ~ ) + ~ I ~ ( ~ ,  I)]  
d 

and consequently 

Remark. If we put in (19) g( t = 0) = 0, then we return to the DGZ formula, which has 
a universal form (3) for any t 2 0. Thus, it is this term which exactly takes into account 
feedback for symmetric extremely diluted networks in the ‘a’-lim. 

Using the same line of reasoning as above, we can proceed to t = 3. Then 

where (see (5) and (10)) 

(22) I ( q )  ( P )  ‘P) P 4  J q ) ( t =  2) =- 1 M  s i g n [ E t ! q ) s , ( r = 1 ) + t n  1 t1  t, w,’ ( t = 1 )  . I ,  I, 2c P ( * q )  J C l ,  

From representation (9, (11) and the limit (17) one gets 

‘cY’-lim w ~ q ( t  = 1) a. tjq)m(q)(t = 1 )  + s,(t = O)g(t = 1 )  +&x(o, 1). (23) 

The density of the probability distribution for (23) (cf (12) and (13)) has the form 

1. (24) 
1 + ulu,m‘q’(0)  (x+  u l m ‘ q ) ( r  = 1) + u2g( t = 1))’ 

c 2 exp[ - 2 a  
1 

fWCl,(X) = - 
*o,.n*=*l 

Then by the same calculation as in (14)-( 17), we get for (22): 

‘cu’-lim v ~ l ~ ( t = 2 ) a g ( r = 2 ) t 1 q ) s , ( t =  I)+&x(o, 1) (25) 

where g( f = 2) = 2afwcl,(0). Consequently, for (21) we obtain 

‘a’-lim ~ j ~ ’ s l ( t = 3 ) ~ s i g n [ m ‘ q ’ ( t = 2 ) + ~ j ~ ’ s , ( t  = l )g ( t  = ~ ) + & N ( o ,  I)]. (26) 

Finally, from (24) and (26) one gets for the main overlap at t = 3 the following 
representation (cf (19), (20)): 

3 (27) 
1 + um‘q’( t  = 1) m y f  = 2) + ug(t = 2) 

& erf [ 2 
mC4’ ( t=3)=  

u=*l 

1 +urn(,)( t = 0) exp[ - (??I(,)( t = 1 )  + ug( t = 
g ( t = 2 ) = p j  0 = + l  1 2 2a 

Summarizing (21)-(28) we conclude that the next step in dynamics of the main 
overlap can be calculated by the straightforward repetition of the above procedure. 
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Therefore, the chain of the coupled equations for evolution of the main overlap 
m‘,’ ( t  = n ) ,  n = 1 , 2 , .  . . , gets the form: 

3 (28) 

I 
1 +am‘4’(r  = n -2 )  m ‘ q ’ ( t  = n - 1)+ag(t  = n - 1) 

& erf [ 
2 m(q)( t = n)= c 

u=+l 

1 + a m ( q ) (  t = n - 2) ( m ‘ q ’ ( t  = n - l ) + a g ( t  = n - 1 ) ) ’  
7r u=*1 8 2a 

with the following initial conditions: 

m(p’ ( t  = 0) = m‘q’(o)6,, m ( p ) ( t  = -1) = 0 p = 1 ,2 ,  . . . g ( t  = O ) = O .  
(29) 

For the saturation limit we get a,= 1.54. 
To derive the corresponding chain for m‘4)(  t )  in the case of non-zero temperature 

( 8  # 0) one can use the following remark. Dynamics (1) is equivalent to stochastic 
equation 

r 1 
s , ( t  + 1 )  = sign 1 Jl,s,( t )  + vi( t )  . 1, 1 

Here { v i ( f ) } ~ l , ~ = l  are I I D R V  with distribution P r { v i ( f ) s x } = f ( l + t a n h p x ) ,  P = e-’, 
which reproduce a heat-bath temperature noise for temperature 8. As a consequence 
one gets additional noisy term 1 in the right-hand side of (23) and (25). This means 
that the equations have to be modified as follows: 

x tanh P(m‘ , ’ (  t = n - 1)+ ag( t  = n - 1)+ y)dy 

1+am‘Y’( t=n-2 )  +a g(r=n)=E u=*l  2 I_, exp{ - $1 
dY 

P 
2 cosh’ P ( y - m ‘ q ’ ( t  = n - 1 )  - a g ( t  = n - 1)) 

X 

with initial conditions (29). 
In this letter we have demonstrated that the symmetric version of the DGZ model 

in ‘a’-lim can be solved exactly. In the case of parallel dynamics DI” we get explicit 
equations for evolution of the main overlap. We have shown that this evolution is 
described by the chain of the coupled equations, see (28) and (32). One of the interesting 
features of this dynamics is its formal two-step memory which was anticipated in [6]. 
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during a visit of one of the authors (VAZ) to Heidelberg University. He would like to 
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